
Subject to change – J. Ganzert 12 / 2001 – 1EF46_0E

Products: FSE, FSIQ, ESIB, FSP, ESPI, FSU, ZVR, ZVC, ZVM, ZVK

Using MATLAB� for Remote Control and Data
Capture with R&S Spectrum and Network

Analyzers

Spectrum and network analyzers are capable of measuring large amounts of data that require complex
mathematical processing; MATLAB� is a powerful tool for such operations. This application note describes

how instruments can be controlled directly from MATLAB� scripts and how measurement data can be
imported into MATLAB�.

MATLAB� is a trademark of The MathWorks, Inc.

Remote Control with MATLAB

1EF46_0E 2 Rohde & Schwarz

Contents

1 Overview..2

2 Remote Control via GPIB ..3

3 Remote Control via LAN..4
Installation ..4
MEXRSIB Functions...4
Example Script ...6

4 Remote Control using VISA...7

5 General Programming Guidelines ...8

6 Programming Example..8

7 Literature ...9

8 Additional Information..9

1 Overview
Spectrum and network analyzers are high-end instruments that perform
various measurement tasks in today’s telecommunication industry. With the
increasing digital modulation, the amount of measurement data is also
increasing and powerful tools for verifying the data are needed. MATLAB is
a powerful tool for simulation and complex mathematical operations.
Modern spectrum analyzers like FSP and FSU provide complex base band
data (I/Q data) in addition to the traditional trace data. I/Q data is essential
for performing analysis in the modulation domain, or using measured
signals for simulation purposes.

This application note shows how to connect Rohde & Schwarz spectrum
and network analyzers and MATLAB in order to perform remote control and
data exchange directly from MATLAB.

Remote Control with MATLAB

1EF46_0E 3 Rohde & Schwarz

2 Remote Control via GPIB
The MATLAB instrument toolbox supports communication with instruments
using GPIB interface cards from several vendors such as Agilent and
National Instruments.

A connection to an instrument is referred to as instrument control session.
The following example shows how to establish the connection and commu-
nicate with the instrument. This example is based on National Instruments
GPIB hardware and software.

1. Create the instrument object using the gpib function:
<instrument object> = gpib(‘<vendor>’, <board index>,
<primary address>);
e.g. GpibInstr = gpib(‘ni’, 0, 20);

2. Open the connection to the instrument:
fopen(GpibInstr);

3. Configure the connection properties, e.g. timeout, termination character,
etc.:
set(GpibInstr, 'EOSCharCode', 0);
sets the termination character to 0 for binary data transfer.

4. Communicate with the instrument. This example reads the ID string
from the instrument:
fprintf(GpibInstr, ‘*IDN?’);
IDString = fscanf(GpibInstr);

5. Close the connection and clean up:
fclose(GpibInstr);
delete(GpibInstr);
clear GpibInstr;

Remote Control with MATLAB

1EF46_0E 4 Rohde & Schwarz

3 Remote Control via LAN
The spectrum and network analyzers can be equipped with a network in-
terface card and thus integrated in a local area network (LAN). With the use
of the RSIB interface, the instruments can be controlled over the LAN.

This approach uses an additional MATLAB DLL that provides functions for
instrument control.

Installation
The RSIB interface is implemented in the RSIB32.DLL. This DLL is shipped
with the instrument firmware and is located in the directory
C:\R_S\INSTR\RSIB for FSE, FSIQ, ESIB, ZVx and respectively in
D:\R_S\INSTR\RSIB for FSP, ESPI, FSU. The RSIB32.DLL must be copied
to the directory <SystemRoot>\system32 (usually C:\WINNT\SYSTEM32)
on the controller PC.

The MATLAB library MEXRSIB.DLL must be located in the working
directory of MATLAB. The DLL is attached to this application note.

MEXRSIB Functions
The MEXRSIB.DLL is a MATLAB specific wrapper for the functions in the
RSIB32.DLL. The following function are supported:

• ud = mexrsib('ibfind', 'ipAddr')
Parameters: ud Device handle

ipAddr IP address of instrument

The function ibfind opens a connection to the instrument with the
specified IP address. If no connection could be established, the device
handle is –1.

• mexrsib('ibwrt', ud, 'szCmdString')
Parameters: ud Device handle

'szCmdString' Zero terminated command string

The function ibwrt sends the specified command string to the
instrument.

• mexrsib('ilwrt', ud, 'szCmdString', uCount)
Parameters: ud Device handle

'szCmdString' Zero terminated command string
uCount Number of bytes to be sent

The function ilwrt sends the specified number of bytes of the
command string to the instrument.

• mexrsib('ibwrtf', ud, 'fileName')
Parameters: ud Device handle

'fileName' Name of file to be sent

The function ibwrtf sends the specified file to the instrument.

• szResponse = mexrsib('ibrd', ud)
Parameters: ud Device handle

szResponse Zero terminated response string

The function ibrd reads a zero terminated string from the instrument.

Remote Control with MATLAB

1EF46_0E 5 Rohde & Schwarz

• szResponse = mexrsib('ilrd', ud, uCount)
Parameters: ud Device handle

szResponse Zero terminated response string
uCount Number of bytes to be read

The function ilrd reads the specified number of bytes from the
instrument into a string.

• binData = mexrsib('ilrd32', ud, uCount)
Parameters: ud Device handle

binData Binary data (e.g. array of float
values)

uCount Number of bytes to be read

The function ilrd32 reads the specified number of bytes from the
instrument into a binary buffer. This is typically an array of float values
with measurement data.

• mexrsib('ibrdf', ud, 'fileName')
Parameters: ud Device handle

'fileName' Name of destination file

The function ibrdf reads data from the instrument into the specified
file.

• mexrsib('ibtmo', ud, val)
Parameters: ud Device handle

val Timeout value in seconds

The function ibtmo sets the timeout value for the communication.

• mexrsib('ibsre', ud, val)
Parameters: ud Device handle

val 0 = local; 1 = remote

The function ibsre sets the instrument state to local or remote.

• mexrsib('ibloc', ud)
Parameters: ud Device handle

The function ibloc sets the instrument to local state.

• mexrsib('ibonl', ud)
Parameters: ud Device handle

This function closes the connection to the instrument. The device handle
is invalidated.

• mexrsib('ibeot', ud, val)
Parameters: ud Device handle

val 0 = no END message;
1 = send END message

The function ibeot enables the END message after write operations or
disables it.

• stb = mexrsib('ibrsp', ud)
Parameters: ud Device handle

stb Status byte

The function ibrsp performs a serial poll and returns the status byte.

Remote Control with MATLAB

1EF46_0E 6 Rohde & Schwarz

• srq = mexrsib('TestSrq', ud)
Parameters: ud Device handle

srq 0 = no SRQ;
1 = SRQ set

The function TestSrq tests the service request (SRQ) status of the
instrument.

• srq = mexrsib('WaitSrq', ud)
Parameters: ud Device handle

srq 0 = no SRQ, timeout expired;
1 = SRQ occured

The function WaitSrq waits for a service request (SRQ) of the
instrument.

Example Script
The following script demonstrates a simple communication with a spectrum
analyzer at IP address 89.10.66.41.
% Open connection to instrument with IP address
89.10.66.41
ud=mexrsib('ibfind', '89.10.66.41')

% Check for valid device handle
if ud > 0

% Set timeout to 10 s
mexrsib('ibtmo',ud,10)

% Init device
mexrsib('ibwrt',ud,'*RST;*CLS')

% Identify the instrument
mexrsib('ibwrt',ud,'*IDN?')
IdStr = mexrsib('ilrd',ud,100)

% Turn display update ON
mexrsib('ibwrt',ud,'SYST:DISP:UPD ON')

% Select single sweep
mexrsib('ibwrt',ud,'INIT:CONT OFF')

% Perform one sweep and wait for operation to
complete

mexrsib('ibwrt',ud,'INIT;*OPC?')
y=mexrsib('ilrd',ud,1)

% Select binary data transfer
mexrsib('ibwrt',ud,'FORM:DATA REAL,32')

% Read trace data
mexrsib('ibwrt',ud,'TRACE? TRACE1')

% Read trace data header
y=mexrsib('ilrd',ud,2)
y=mexrsib('ilrd',ud,4)

% ... and now the measurement data
x=mexrsib('ilrd32',ud,2500/4);
plot(x);grid;

% Set instrument to local
mexrsib('ibloc',ud)

end

Remote Control with MATLAB

1EF46_0E 7 Rohde & Schwarz

4 Remote Control using VISA
VISA is a standardized software interface library providing input and output
functions to communicate with measuring instruments. An initialization
function in the relevant application program defines which device interface
(LAN, GPIB or RS-232) is to be used. The subsequent program code is
completely independent of the I/O interface.

The MATLAB instrument toolbox offers functionality to access both NI-VISA
and Agilent VISA. NI-VISA version 2.5 implements a passport mechanism
that extends the supported I/O channels. The following paragraphs describe
how to install a passport for the RSIB interface.

Similar to communication via GPIB, a connection to an instrument is re-
ferred to as an instrument control session. The following example shows
how to establish the connection and communicate with the instrument. This
example is based on National Instruments GPIB hardware and software.

The MATLAB instrument toolbox and NI-VISA must be installed on the
controller PC.

1. Create the instrument object using the visa function:
<instrument object> = visa(‘<vendor>’, <resource
descriptor>);
e.g. viInstr = visa(‘ni’, ‘GPIB0::20::INSTR’);

2. Open the connection to the instrument:
fopen(viInstr);

3. Configure the connection properties, e.g. timeout, termination charac-
ter, etc.:
set(viInstr, 'EOSCharCode', 0);
sets the termination character to 0 for binary data transfer.

4. Communicate with the instrument. This example reads the ID string
from the instrument:
fprintf(viInstr, ‘*IDN?’);
IDString = fscanf(viInstr);

5. Close the connection and clean up:
fclose(viInstr);
delete(viInstr);
clear viInstr;

The main advantage of using VISA compared to GPIB is that different I/O
channels can be used without modifying the program code except for the
resource descriptor.

Remote Control with MATLAB

1EF46_0E 8 Rohde & Schwarz

5 General Programming Guidelines
This section mentions some general programming guidelines that apply to
all remote control solutions.

Acquiring measurement data often requires a special setup of the instru-
ment. This setup is closely related to the time required for data acquisition.
When a remote control program retrieves measurement data from the in-
strument, it is essential that data acquisition is complete before data is read
from the instrument.

Synchronization can be achieved using one of the following three methods:

• Appending “*WAI” to a remote control command forces the control
program to wait at the next I/O operation until the previous command has
been finished.

• When appending “*OPC?”, the subsequent read operation will return
successfully only if the previous operation has been completed.

• Sending the common command “*OPC” will cause the instrument to issue
a service request upon completion, if the status enable mask register and
the event status enable mask register are set accordingly. The client
program can then wait for the service request before proceeding with data
import from the instrument.

For detailed documentation of synchronization mechanisms refer to the op-
erating manual of the instrument.

Spectrum and network analyzers can provide measurement data in two
different formats: ASCII and binary. For automated test systems it is rec-
ommended to use the binary data format, because the data size is well de-
fined and the data transfer is faster than in ASCII format.

6 Programming Example
Attached to this application note is a MATLAB script that acquires data from
a digital modulated signal using the spectrum analyzer FSU. The I/Q data
from the spectrum analyzer is converted into a format that can be
downloaded in the arbitrary waveform generator AMIQ. In conjunction with
the signal generator SMIQ, the measured data can then be reapplied to a
device under test.

The script illustrates the main steps of the process:

1. Setup the spectrum analyzer for acquisition of IQ data.

2. Acquire IQ data and transfer to the controller PC.

3. Convert IQ data for waveform generator AMIQ.

Detailed comments are included in the MATLAB script FSU_AMIQ.m

Remote Control with MATLAB

1EF46_0E 9 Rohde & Schwarz

7 Literature
For more information about the RSIB interface as well as for documentation
of the remote control commands, refer to the operating manual of the in-
strument.

For a detailed documentation of MATLAB functions and the instrument tool-
box refer to the online help in MATLAB.

8 Additional Information
Please contact TM-Applications@rsd.rohde-schwarz.com for comments
and further suggestions.

ROHDE & SCHWARZ GmbH & Co. KG . Mühldorfstraße 15 . D-81671 München . P.O.B 80 14 69 . D-81614 München .
Telephone +49 89 4129 -0 . Fax +49 89 4129 - 13777 . Internet: http://www.rohde-schwarz.com

This application note and the supplied programs may only be used subject to the conditions of use set forth in the
download area of the Rohde & Schwarz website.

	Overview
	Remote Control via GPIB
	Remote Control via LAN
	Installation
	MEXRSIB Functions
	Example Script

	Remote Control using VISA
	General Programming Guidelines
	Programming Example
	Literature
	Additional Information

